HMGA1 protein is a positive regulator of the insulin-like growth factor-I receptor gene

Aurora Aiello a, Giuseppe Pandini b, Rive Sarfstein c, Haim Werner c, Guidalberto Manfioletti d, Riccardo Vigneri b, Antonino Belfiore a,*

a Department of Clinical and Experimental Medicine, Endocrinology, University of Catanzaro, 88100 Catanzaro, Italy
b Department of Internal Medicine and Medical Specialties, Endocrinology, University of Catania, 95123 Catania, Italy
c Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
d Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, University of Trieste, Italy

ARTICLE INFO

Article history:
Received 26 January 2010
Accepted 26 February 2010
Available online xxxx

Keywords:
IGF-IR
IGF-IR regulation
HMGA1 protein
Insulin receptor

ABSTRACT

The IGF-I receptor (IGF-IR) is often overexpressed in cancer and is believed to play a crucial role in cancer progression. High Mobility Group A1 (HMGA1) is a non-histone chromatin protein that has the ability to regulate gene expression through DNA binding and involvement in enhanceosome complexes. HMGA1 is expressed at low level in adult differentiated cells, whereas it is expressed at high level in embryonic and malignant cells.

We evaluated whether the HMGA1 aberrant expression has a role in IGF-IR overexpression in cancer. We found that HMGA1 silencing induces a marked decrease in IGF-IR expression in various human cancer cell lines. Conversely, forced HMGA1 overexpression in cells with low endogenous HMGA1 levels was associated with IGF-IR upregulation. HMGA1 silencing reduced igf-ir promoter activity whereas forced HMGA1 expression increased it. Using the chromatin immunoprecipitation assay, HMGA1 protein was found to bind to the igf-ir promoter. Moreover, HMGA1 was found to associate with both p53 and Sp1, two major regulators of igf-ir gene transcription and to antagonise the p53 inhibitory activity while enhancing the Sp1 stimulatory activity.

Our data indicate, therefore, that HMGA1 protein is a positive regulator of IGF-IR expression and that HMGA1 overexpression may contribute to IGF-IR dysregulation in cancer cells.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Various lines of evidence indicate that the insulin-like growth factor-I receptor (IGF-IR) plays a crucial role both in the regulation of normal growth and development and in carcinogenesis. The IGF-IR role in development is exemplified by studies carried out in transgenic igf-ir−/− mice, which show a markedly reduced size at birth and die soon afterwards. Moreover, the IGF-IR plays a permissive role on cell transformation: igf-ir knock-out mouse fibroblasts become unable to undergo transformation by several oncogenes. In these fibroblasts IGF-IR re-expression not only restores the ability to undergo transformation in response to oncogenes but also induces ligand-dependent transformation if IGF-IR level exceeds a threshold value. In agreement with these findings, malignant cells often overexpress the IGF-IR. Finally, epidemiological...
studies indicate that circulating levels of bioactive IGF-I above normal levels or just at the upper quartile of the normal range are associated with an increased risk of developing various common malignancies.6 Taken together, these studies indicate that the IGF-IR plays a crucial role in cancer biology7 and justify the fact that the IGF-IR has become an important target for anticancer therapies.7,8

The mechanisms causing deregulated IGF-IR expression in cancer are incompletely understood.9,10 In both physiological and pathological conditions the level of IGF-IR expression is primarily determined at the transcriptional level.9 The igf-ir promoter region belongs to the class of TATA-less promoters and contains multiple GC boxes, potential binding sites for Sp1 and a transcription factor involved in igf-ir promoter constitutive activity. In addition, the promoter region includes binding sequences for the Wilms’ tumour suppressor, WT1.11 Finally, nuclear factors, such as p53 and Breast Cancer 1 (BRCA1), negatively regulate igf-ir transcription, in part through a functional interaction with Sp1.11,12 Oncogenic counterparts of these nuclear factors may represent possible mechanisms for IGF-IR dysregulation in cancer.9

The High Mobility Group A (HMGA, i.e. HMGA1 and HMGA2) proteins are non-histone chromatin proteins that function as both positive and negative regulators of gene transcription.13 These proteins may regulate gene transcription not only by direct binding to the minor groove of DNA and affecting DNA structure but also by binding to a variety of transcription factors and participating to the formation of multiprotein enhancosome complexes.13,14 Several lines of evidence led us to postulate that the HMGA proteins could be involved in igf-ir regulation. HMGA proteins are expressed at low level in differentiated adult cells but at very high level in embryonic and cancer cells,13–15 and have been causally related to cell growth and to the malignant/metastatic phenotype. HMGA expression increases when cells are induced to proliferate.13 In MCF-7 breast cancer cells forced overexpression of HMGA1 induced a gene expression programme compatible with dedifferentiation and epithelial-mesenchymal transition,16 while HMGA1 silencing reverted the malignant phenotype in thyroid cancer cells.17 Finally, HMGA1 has been implicated in the regulation of the insulin receptor gene (ir), which is closely related to the igf-ir gene, although subjected to different regulation and expression patterns.19–21

In the present study we show that HMGA1 protein is a positive regulator of igf-ir gene expression and that it may contribute to IGF-IR overexpression in cancer cells.

2. Materials and methods

2.1. Cell cultures

The human hepatoblastoma cells HepG2 and the human embryonic kidney cells, HEK293 and HEK293T, were from ATCC (Manassas, VA). HepG2 were grown in MEM, while HEK293 and HEK293T were grown in Dulbecco’s modified Eagle’s medium (DMEM). Papillary thyroid cancer cells TPC-1 were provided by Drs. A. Fusco and M. Santoro (Naples, Italy) and anaplastic thyroid cancer cells SW1736 were provided by Dr. N.E. Heldin (Upsala, Sweden). Both these cell lines were grown in RPMI 1640. The human osteosarcoma cell line Saos2 was provided by Dr. J.Y. Wang (La Jolla, CA) and was cultured in DMEM. Media were supplemented with 10% (v/v) FBS.

2.2. Gene silencing by siRNA

Cells plated onto six-well plates were transiently transfected with either scramble small interfering RNA (siRNA) or a mixture of four HMGA1 siRNAs at 100 nM final concentration (Dharmacon Research, Inc., Lafayette, CO), using Lipofectamine 2000 (Invitrogen, Pasley, UK). Forty-eight hours after transfection, the cells were lysed and analysed by Western blot.

2.3. Western blotting analysis

Cell lysates prepared from either untransfected or transiently transfected cells were subjected to SDS-PAGE. The resolved proteins were transferred to nitrocellulose membranes and were subjected to Western blot. Results were revealed by the ECL method (Amersham, Little Chalfont, UK), and analysed by densitometry. The following antibodies were used: anti-p53 monoclonal antibody DO-1, anti-Sp1 polyclonal antibody and anti-IGF-IR β-subunit polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA), anti-IR β-subunit polyclonal antibody (Transduction Laboratories, Lexington, KY, USA) and anti-β-actin antibody (Sigma, St. Louis, MO). Anti-HMGA1 polyclonal antibodies were obtained as previously described.22

For immunoprecipitation experiments, 1 mg of cell lysate was incubated for 2 h with 2 μg of antibody and protein G-Sepharose (GE Healthcare, Buckinghamshire, UK). Anti-p53 antibody DO-1, anti-Sp1 and anti-HMGA1 antibodies were used for immunoprecipitation.

2.4. Transient transfection and reporter assays

To assess the effect of HMGA1 on igf-ir promoter activity, HEK293 and Saos2 cells were transiently transfected with a HA-HMGA1 construct (in pcDNA3), as previously described.23 The concomitant effect of p53 and Sp1 was studied by transfecting cells with constructs encoding for the human p53 (HA-p53) and human Sp1. We used two different igf-ir promoter reporters: one including 476 bp of 5′-flanking and 640 bp of 5′-untranslated regions of the igf-ir gene [p(−476/+640) luciferase] (representing the proximal igf-ir promoter) and a second one containing a minimal igf-ir promoter fragment, [p(−40/+640) luciferase].

Cells seeded in 24-well plates were cotransfected with 0.3 μg of the igf-ir promoter reporter along with 0.2 μg of the HA-HMGA1 expression vector (or empty HA-pcDNA3) unless otherwise indicated, and with 0.2 μg of the p53 and Sp1 expression plasmids. The cells were lysed and processed according to the manufacturer’s instructions (Promega Corp., Madison, WI). Luciferase activity was normalised for transfection efficiency using a vector coding for the Renilla gene.

2.5. Chromatin immunoprecipitation (ChIP) studies

HEK293T cells were transfected with a HMGA1 expression vector (HA-HMGA1, 6 μg) (or with empty HA-pcDNA3 vector, for control purposes), using the Jet-PEI transfection reagent
To avoid the possible interference of mutated p53 which might cause IGF-IR overexpression in cancer cells, we first studied HMGA1 silencing in HepG2 and TPC-1 cells, both expressing wild-type p53 and characterised by relatively high IGF-IR and IR content, and by the ability to respond to IGF-I with biological effects.

HepG2 and TPC-1 cells were transfected either with specific siRNAs against HMGA1 or with scramble control siRNA. The expression of HMGA1, IGF-IR and IR proteins was then evaluated in transfected cells by immunoblotting. In both HepG2 and TPC-1, cell transfection with HMGA1 siRNAs induced a marked reduction of HMGA1 protein (to 28 ± 4% and 33 ± 6% of control values, in HepG2 and TPC-1, respectively) (Fig. 1A).

HMGA1 silencing was associated with a parallel decrease of IGF-IR expression (to 61 ± 4% and 56 ± 7% of control values, respectively; P < 0.001) (Fig. 1A) and with a similar reduction of IR expression (to 64.4 ± 5% and 56 ± 7% of control values, in HepG2 and in TPC-1, respectively; P < 0.001) (Fig. 1A).

We then evaluated whether HMGA1 regulates IGF-IR expression both negatively and positively. To this aim we studied HEK293 cells, which express HMGA1 protein at a lower level than HepG2 or TPC-1, thus allowing us to evaluate not only the effect of HMGA1 silencing but also the effect of HMGA1 overexpression. HEK293 cells were transfected with either HMGA1 siRNAs (Si) or a HMGA1 expression plasmid (HMG), as described in Section 2. Cells left untransfected (wt) or transfected with scramble siRNAs (Sr) were used as controls. Forty-eight hours after transfection, the cells were lysed and analysed by Western blot for the expression of HMGA1, IGF-IR and IR. The same blots were probed with an anti-β-actin antibody to check for protein loading. Blots are representative of three independent experiments.

Fig. 1 – HMGA1 silencing and overexpression regulate IGF-IR expression in cells with wild-type p53. (A) HepG2 and TPC-1 cells were transfected with HMGA1 siRNAs (Si); (B) HEK293 cells were transfected with either HMGA1 siRNAs (Si) or a HMGA1 expression plasmid (HMG), as described in Section 2. Cells left untransfected (wt) or transfected with scramble siRNAs (Sr) were used as controls. Forty-eight hours after transfection, the cells were lysed and analysed by Western blot for the expression of HMGA1, IGF-IR and IR. The same blots were probed with an anti-β-actin antibody to check for protein loading. Blots are representative of three independent experiments.
3.2. HMGA1 regulates IGF-IR expression also in human cancer cells bearing a null p53 mutation

In order to evaluate whether HMGA1 regulates IGF-IR expression independently of the presence of p53, we studied two human cancer cell lines null for p53, SW1736 cells, which express a high level of HMGA1, were transfected with HMGA1 siRNA. HMGA1 silencing caused a significant decrease of the IGF-IR protein expression (to 65 ± 8% of control values; \(P < 0.05 \)). A similar, more marked effect was observed on the IR (decreased to 11 ± 4% of control values, \(P < 0.001 \)) (Fig. 2).

In contrast to SW1736 cells, Saos2 cells are characterised by low endogenous levels of HMGA1. These cells were then transfected with increasing doses of a HMGA1 expression plasmid. Forced expression of HMGA1 resulted in a dose-dependent IGF-IR upregulation with a maximal increase to 198 ± 22% of control values (\(P < 0.001 \)) (Fig. 2). IR expression followed a similar pattern with a more marked maximal increase to 281 ± 27% of control values (\(P < 0.001 \)) (Fig. 2).

These results indicate that HMGA1 may modulate IGF-IR expression also independently of p53.

3.3. Mechanisms of IGF-IR expression regulation by HMGA1 protein

We then studied the mechanisms of IGF-IR regulation by HMGA1. First, HEK293 cells were transfected with either the proximal IGF-IR promoter, \(-476/+640\) Luc or a minimal \(igf-ir\) promoter fragment, \(-40/+640\) Luc, both fused to the luciferase reporter gene in the presence or absence of HMGA1 siRNA (either 25 or 100 nM). HMGA1 silencing reduced the \(igf-ir\) promoter activity in a dose-dependent manner. The effect of HMGA1 transfection was more marked when using the proximal promoter (approximately 50% decrease after 100 nM siRNA) with respect to cells transfected with the \(-40/+640\) promoter fragment (approximately 20% reduction after 100 nM siRNA) (Fig. 3A).

Second, we studied whether HMGA1 protein may modulate the p53 negative regulatory activity on \(igf-ir\) promoter. To this aim we used p53 null Saos2 cells, which have a low level of endogenous HMGA1. Saos2 cells were transfected with the proximal \(igf-ir\) promoter reporter and promoter activity was then evaluated in cells cotransfected with either HMGA1 alone or in combination with p53. Transfection with HMGA1 alone increased \(igf-ir\) promoter activity by approximately 25%, while transfection with p53 alone reduced the promoter activity to less than 50%. When p53 was cotransfected with increasing HMGA1 concentrations, HMGA1 titrated the inhibitory effect of p53 up to the dose of 0.2 μg/dish, when it abolished the effect of p53 (Fig. 3B).

We then evaluated whether increasing HMGA1 protein could also affect the positive regulatory activity of Sp1 on \(igf-ir\) promoter. Sp1 stimulated \(igf-ir\) promoter activity by +62 ± 15%. Sp1 activity was blocked by cotransfection with wild-type p53, while it was enhanced by the cotransfection with HMGA1 (Fig. 3C). In the same set of experiments, p53-mediated inhibition of \(igf-ir\) promoter activity was antagonised by both Sp1 and HMGA1 to a similar extent (Fig. 3C). Taken together, these data suggest that HMGA1 may enhance \(igf-ir\) promoter activity by both antagonising p53 and potentiating Sp1 activity.

3.4. HMGA1 interacts with both Sp1 and p53

We then studied whether HMGA1 protein physically interacts with either Sp1 or p53 or both. To this aim, we cotransfected HEK293 cells with HMGA1, Sp1 and p53 expression vectors. The cells were then lysed, immunoprecipitated with either anti-p53 or anti-Sp1 and immunoblotted with an anti-HMGA1 antibody. As shown in Fig. 4A, HMGA1 protein specifically coimmunoprecipitated with both p53 and Sp1. Data were confirmed by immunoprecipitating cell lysates with either an anti-HMGA1 or an anti-p53 antibody and immunoblotting with an anti-Sp1 antibody (Fig. 4B), and by immunoprecipitating cell lysates with either an anti-Sp1 or an anti-HMGA1 antibody and immunoblotting with an anti-p53 antibody (Fig. 4C).

3.5. HMGA1 interacts with the \(igf-ir\) promoter

To provide direct evidence that the HMGA1 protein interacts with the \(igf-ir\) promoter, we used the chromatin immunoprecipitation analysis (ChIP). HEK293T cells were transfected with either a HMGA1-encoding expression vector (HA-HMGA1) or the corresponding empty vector (HA-pcDNA3). The cells were then cross-linked with formaldehyde, lysed, sonicated and immunoprecipitated with a HA antibody, followed by PCR amplification of the IGF-IR promoter DNA (773 bp). As shown in Fig. 5, a specific signal was clearly present in the immunoprecipitated material of HMGA1-transfected, but not of pcDNA3-transfected cells, indicating that HMGA1 binds in vivo to the IGF-IR promoter.
3.6. HMGA1 silencing inhibits the growth response to IGF-I and insulin

In order to evaluate the biological relevance of IGF-IR down-regulation by HMGA1 silencing, we studied TPC-1 cell growth. Cells were exposed to 10 nM IGF-I and the growth was measured by both MTT assay and BrdU incorporation. In control cells, IGF-I increased cell growth by approximately 50% over basal. HMGA1 silencing reduced basal cell growth by approximately 30% and abolished the growth response to IGF-I. Fig. 6 shows data obtained by MTT assay. Very similar data were observed by measuring BrdU incorporation (data not shown). Results similar to IGF-I stimulation were observed with insulin stimulation (Fig. 6).

4. Discussion

Herein we show that HMGA1 protein is a positive regulator of igf-ir transcription and that HMGA1 silencing markedly reduces IGF-IR expression in a variety of cancer cells. HMGA1 protein, present at low level in adult differentiated cells, is usually expressed at high level in cancer cells, where it contributes to the maintenance of the malignant/metastatic phenotype.13,15,16 HMGA1 may represent, therefore, one important factor driving IGF-IR overexpression in cancer cells.

HMGA1 enhances IGF-IR promoter activity and protein expression by multiple mechanisms. One mechanism involves p53, which is a major negative regulator of igf-ir
Indeed, inactivating p53 mutations has been implicated as a potential mechanism for IGF-IR dysregulation in cancer cells. We find that HMGA1 protein associates with p53 and impairs the p53 inhibiting effect on the igf-ir promoter in a dose-dependent manner. These findings are in close agreement with previous studies showing that HMGA1 protein interacts with the oligomerisation domain of p53 and inhibits p53 apoptotic activity by impairing its ability to oligomerise into functionally active tetramers.

These studies also showed that HMGA1 silencing leads to increased p53 transcriptional activity. Therefore, HMGA1 overexpression may enhance igf-ir gene transcription by causing p53 functional inactivation. Conversely, HMGA1 reduction may cause a parallel decrease of IGF-IR transcriptional activity.

The IGF-IR is a close homologue of the IR, which has a predominant role in glucose homeostasis. The IR is also overexpressed in cancer cells, predominantly as isoform A (IR-A), which is a high affinity receptor for both insulin and IGF-II. Previous work indicates that ir transcription is positively regulated by HMGA1 protein, and although ir transcriptional control is different from that of igf-ir, both genes share some common regulatory factors, such as p53 and Sp1. Now we show that HMGA1 silencing and overexpression have similar effects on IGF-IR and IR protein expression in a variety of transformed cells. We also found that HMGA1 silencing slightly reduce growth in unstimulated cells and...
completely abolish cell growth in response to IGF-I and insulin.

In summary, our data indicate that HMGA1 protein binds to the igf-ir promoter and regulates igf-ir transcription through multiple mechanisms. The high levels of HMGA1 protein in transformed cells may contribute to IGF-IR and IR dysregulation in cancer and may become a target for therapies aimed at reducing malignant cell response to IGFs and insulin.

Conflict of interest statement
None declared.

Role of funding sources
The funding sources had no role, in the study design; in the collection, analysis and interpretation of data; in the writing of the manuscript and in the decision to submit the manuscript for publication.

Acknowledgements
This work was supported in part by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC) to A.B., R.V. and G.M., and from PRIN-MIUR, grants 2005055874-002 and 2005063915-004.

References
